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COMPUTATION OF VISCOELASTIC CABLE COATING
FLOWS
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SUMMARY

A viscoelastic analysis is presented for model tube tooling, draw-down and combined geometry flows
encountered in the cable coating industries. The work investigates the development of stress fields and
studies the effect of varying entry flow stress boundary conditions. The analysis takes into account tube
tooling and draw-down flow sections individually, and in combination. The flow behaviour of cable-coat-
ing grade low density polyethylene is studied assuming a viscoelastic, isothermal flow, and employing a
Taylor–Petrov–Galerkin finite element scheme with an exponential Phan-Thien–Tanner constitutive
model. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The process of coating wide-bore cables consists of two flow regimes, namely a shear-domi-
nated flow within the tube tooling or die region, and an extension-dominated flow in a
draw-down region, where the melt meets the cable. The molten polymer is injected into the
tooling die and flows under the influence of a pressure gradient. The extruded molten plastic
tube makes contact with the cable beyond the die, where it is drawn out in the form of a sheath
around the cable. The motion of the cable induces a drag flow. The coating process is a
free-surface problem, by which a film of liquid is continuously deposited on a rigid moving
cable. Coating lines for wide-bore cables are run at relatively low speeds of 0.1–0.5 m s−1.
Alternative pressure tooling die designs, used for narrow-bore cables, are operated at speeds
approximately ten times greater. In this instance, the coating meets the cable within the die
itself.

There are a number of assumptions and approximations associated with the numerical
simulation of such problems. These include neglecting the effect of elasticity, e.g. Tucker [1],
Han et al. [2,3], Pearson et al. [4,5], Carley et al. [6], Basu [7], Agur et al. [8], Mitsoulis et al.
[9] and Binding et al. [10]; the assumption of isothermal flow, e.g. Han et al. [2,3], Caswell et
al. [11] and Mitsoulis et al. [12]; the choice of boundary condition to be assigned at the
melt–metal interface (Tucker [1]), where no-slip boundary conditions are usually employed
(Arpin et al. [13] and Basu [7]); the selection of a suitable constitutive equation to describe the
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material behaviour (Pearson [5], Saramito et al. [14] and Mitsoulis [15]); and the approach
in modelling the free surface flow in the draw-down section. Contact lines are either static
attachment or separation lines, where a fluid intersects a stationary die surface, or dynamic
wetting lines, where the polymer melt continually encounters new cable to be coated. A
further complication is the location of free surfaces, and thus the start of the wetting line,
which are unknown a priori. Some of the studies presume these positions are known (e.g.
Gunter et al. [16]), others determine the position of the free surfaces iteratively (Agur et al.
[8], Mitsoulis [17] and Heng et al. [18]). The present work concentrates on coatings with
molten low density polyethylene (LDPE), assuming isothermal conditions, no-slip within the
die, and a fixed location for the free surfaces. An exponential Phan-Thien–Tanner constitu-
tive model is chosen to fit the steady shear and uniaxial extension data determined by
Walters et al. [19].

This study naturally follows the precursor investigation of Gunter et al. [16], in which
model extensional flows were analysed. This included a viscoelastic analysis for a number of
test problems, culminating in a draw-down flow. Stress prehistory was absent from this
earlier work. The objectives here are to study the sensitivity of the numerical results to
adjustments in stress boundary conditions within the context of a single mode, viscoelastic
analysis for isolated tube tooling, draw-down, and combined tube tooling–draw-down
flows. This will cast some light on the influence of prehistory for the separate and com-
bined flow subproblems. Segmentation of the flow into subproblems enables a systematic
study, permitting isolation of the competing extension and shear effects associated with the
various subsections of the problem.

2. GOVERNING EQUATIONS AND PROBLEM SPECIFICATION

The non-dimensional system of equations consists of the momentum equation,

Re
(u
(t

=9 · (2m2D+t)−Reu ·9u−9p, (1)

the continuity equation,

9 ·u=0, (2)

and the Phan-Thien–Tanner (PTT) constitutive equation,

We
(t

(t
=2m1D− ft−We{u ·9t−9u ·t− (9u ·t)†+j [Dt+ (Dt)†]}, (3)

where u is the velocity vector, p is the isotropic pressure, t is a polymeric extra-stress
tensor, D is the rate of deformation tensor, t is the independent time variable, 9 is the
gradient operator and † denotes matrix transpose. For the exponential version of the PTT
model, the non-linear function f is defined as,

f=exp
�

We
o

m1

trace(t)
n

. (4)
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Non-dimensionalisation requires scales of U for velocity (cable velocity), Lc for length (the
length of the extension region of the draw-down flow), Lc/U for time, and m (U/Lc) for
stress and pressure. Here, m is a zero-shear rate viscosity, given by m=m1+m2, where m1 is
a polymeric viscosity (that vanishes for a Newtonian fluid) and m2 is a solvent viscosity.
Non-dimensional groups of Reynolds number and Weissenberg number are defined as
Re=rULc/m and We= (U/Lc) l1 respectively, where r is the fluid density and l1 is a
relaxation time. PTT models (e.g. Bird et al. [20]) are referred to as PTT(o, j), for which
the constant viscosity Oldroyd-B model is given by PTT(0, 0). The parameters o, (o]0) and
j (05j52) are material parameters that govern the elongational and shear properties of
the model, respectively. Models with o=0, demonstrate a constant shear viscosity for either
j=0 (Oldroyd-B model) or j=2, and are shear thinning otherwise (Carew et al. [21]).

The solution of Equations (1)–(3), with appropriate boundary and initial conditions, is
performed based on a Taylor–Petrov–Galerkin–pressure-correction finite element scheme of
Carew et al. [21]. This involves a fractional-staged approach for solving velocity, stress and
pressure as primary variables of the system, with a time stepping scheme to calculate
stationary solutions for complex flows of viscoelastic fluids. Semi-implicitness is incorpo-
rated within the time stepping scheme for the momentum equation, whilst the constitutive
equation is solved using an explicit procedure. Each fractional-staged equation is solved by
an iterative solver, bar the pressure Poisson equation for which a direct Choleski method is
used. A decoupled scheme variant, which linearises the problem by employing Newtonian
kinematics as frozen coefficients for the viscoelastic problem (Carew et al. [22]), is invoked
to obtain steady-state solutions. This analysis is efficient and stabilising to the solution
process and yields a first estimate of stress fields. Also, it provides a route to access
multi-mode predictions via an iterative combination of single-mode solutions.

Due to the highly elastic and convection-dominated nature of the constitutive equations,
streamline upwinding, SUPG (Carew et al. [21]) is employed to suppress streamwise oscilla-
tions in the discrete solution. A high degree of accuracy is enforced via a Jacobi iteration,
to suppress cross-stream oscillations (Gunter et al. [16]). At each fractional stage, seven
Jacobi iterations are used for the isolated draw-down flow. Similarly, five iterations are
employed for the isolated tube tooling die flow and the combined geometry flow. A
Courant number stability constraint is used to determine the time step of 10−3 for all
meshes and geometries. Detailed discussion on the numerical scheme and its implementation
is provided elsewhere (Gunter et al. [16], Carew et al. [21,22]), and for brevity is not
repeated here.

To complete the problem specification it is necessary to prescribe initial and boundary
conditions. For all problems considered, geometries are annular in cross-section, requiring
an axisymmetric frame of reference, and simulations are conducted at a fixed Reynolds
number of 2.78×10−4. The melt flow is assumed to be incompressible and isothermal, with
material properties corresponding to a coating grade for LDPE. In non-dimensional form,
the parameters used are: m1=0.9995, m2=0.0005, o=0.1 and j=0.01. These parameters
are taken from a fit of the PTT model to steady simple shear and uniaxial extension
rheometrical data of Walters et al. [19]. In practice, a spectrum of relaxation times is
associated with each material. To a first approximation, a single-mode analysis is conducted
and results are reported for 0.15We528. For all We number simulations, initial condi-
tions are taken as frozen Newtonian kinematics with relaxed stress. The following nomen-
clature identifies the various entry flow boundary condition combinations that are
considered:

Newtonian pressure-driven annular shear flow with PTT(0, 0.01) stress;BC1:

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 697–712 (1998)
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Newtonian pressure-driven annular shear flow with PTT(0.1, 0.01) stress;BC2:
Plug flow with uniaxial-extension PTT(0.1, 0.01) stress;BC3:

BC4: Plug flow with relaxed (zero) stress.

The first two cases are shear flow alternatives, with option BC1 providing algebraic simplicity
for ease of practical implementation, whilst BC2 gives consistency with the interior flow. The
last two cases are appropriate for extensional flow, as there is an absence of prehistory in
option BC4, and BC3 matches the internal flow conditions.

2.1. Tube tooling flow

A schematic diagram of the tube tooling geometry and associated finite element grid is
shown in Figure 1. Empirical investigation with coarser and finer grids led to this choice on the
grounds of accuracy and efficiency. The fluid enters the geometry at AL with a fully developed
pressure-driven Newtonian annular velocity profile, Vi(r) (Bird et al. [23]), and exits at DI with
profile, Vo(r), likewise Ri and Ro in Figure 1 are the inner and outer radii, respectively. No-slip
boundary conditions are imposed along the die walls, AD and IL. Vanishing pressure datum
and radial velocity also apply on the domain outlet. Inlet boundary conditions for stress are
determined analytically under the assumption of a fully developed simple shear flow and the
PTT(o, j) model satisfying Equation (3). For a shear rate g; (r), such boundary conditions are
given by,

trz= (m1g; f)/[f 2+We2(g; )2j(2−j)], (5a)

trr= − (Wejg; trz)/f, (5b)

tzz= − [We(2−j)g; trz ]/f, (5c)

and

tuu=0. (5d)

Figure 1. Tube tooling flow: (a) computational geometry and (b) finite element grid.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 697–712 (1998)
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Figure 2. Draw-down flow: (a) computational geometry and (b) finite element grid.

Note, that the parameter f in the above equations is unity for a PTT(0, j) model. Alterna-
tively, for a PTT(o, j) model, f satisfies

ln f= [2o(Weg; )2(1−j)]/[f 2+ (Weg; )2j(2−j)]. (5e)

A Newton iteration is employed to determine f from relationship (5e).

2.2. Isolated draw-down flow

The draw-down geometry, together with the mesh employed is illustrated in Figure 2. At the
inlet boundary DI (Figure 2) option BC1 is analysed first, with PTT(0, 0.01) stress for the exit
flow profile from the tube tooling die, as specified above. Boundary conditions over the
remainder of the domain are as follows: along the traction-free surfaces (DE and GI in Figure
2) the velocity is defined as the resultant velocity approximated from the condition of constant
melt flow rate. Vanishing radial velocity and pressure datum, together with a plug-like velocity
profile, are specified at the exit boundary, GF. The boundary EF is assumed to move with the
cable. The assumption of a simple shear flow at the inlet of the draw-down geometry with
stress values calculated using a PTT(0, 0.01) model, is inconsistent with the interior solution
generated for a PTT(0.1, 0.01) version. A growth in tzz stress caused by the dragging action of
the cable is anticipated in the draw-down cone, together with a subsequent stress relaxation as
the fluid travels in contact with the cable. Imposing BC1 option inlet stress conditions results
in relatively high entry stress levels, thus causing some unexpected results.

For this subproblem and consistency, it is more appropriate to match the inlet stress
conditions to the type of flow generated within the draw-down, being an extension-dominated
flow. To this end, a uniaxial extensional entry flow with a plug-like velocity profile is also
tested (option BC3). Using a constant and uniform extension rate, o; in at the inlet, fully
developed PTT(o, j) stress values are computed viz:

tzz=2m1o; in/[f−2Weo; in(1−j)], (6a)

trr=tuu= −m1o; in/[f+Weo; in(1−j)], (6b)

and

trz=0, (6c)

where f satisfies the relationship,

ln f= [6(Weo; in)2o(1−j)]/{[f−2Weo; in(1−j)][f+Weo; in(1−j)]}. (7)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 697–712 (1998)
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A suitable non-dimensional inflow extension rate, o; in, is taken as o; in=DV/DZ, being a simple
approximation over the first few mesh elements.

2.3. Combined tube tooling–draw-down flow

This flow comprises of the two individual flow sections described above, merged to form a
single domain. A schematic diagram of the combined geometry together with notation,
boundary conditions and its associated finite element grid is provided in Figure 3. The imposed
boundary conditions are a combination of those reported for the isolated tube tooling flow and
draw-down geometry flow. The only exception here is that now there is no disjunction in the
flow at the end of the tube tooling die and the start of the draw-down flow. The solution will
provide a check on the localised stress conditions that pertain to the join of the two
subproblems, and an indication of their discrepancy from the idealised boundary conditions
otherwise imposed.

3. RESULTS AND DISCUSSION

3.1. Tube tooling flow

The variation in the magnitude of velocity along various sample flow lines indicates that
fully developed flow is established over the entry section of the tube tooling die, followed by
an increase at the converging section. In the outlet section, the numerical results coincide
almost exactly with the imposed analytical boundary condition.

It is more straightforward algebraically to specify boundary conditions with models for
which o=0 and f=1. The influence on solution development of consequent perturbation in
the boundary condition becomes a point at issue once o\0 and f is non-constant. Preliminary
solutions at We=0.1 and 1 for the isolated tube tooling geometry with an annular velocity
profile and PTT(0, 0.01) stress (option BC1) have shown that, immediately after entering the
tube tooling geometry, tzz stress experiences spatial oscillations, which die out as the flow
progresses through the geometry. These streamwise oscillations at entry are due to the nature
of the imposed inlet stress boundary conditions, being inconsistent with the PTT(0.1, 0.01)
model used to simulate the interior flow. Nevertheless, the entry section of the tube tooling
geometry is long enough for the stress to reach a fully developed state before the flow enters
the converging section. Hence at low We and for such a long hydrodynamic development
section, the problem is relatively insensitive to perturbations in the inlet stress boundary
condition; however, spatial oscillations begin to appear with increasing We. These oscillations
are eliminated by imposing a fully developed flow with an annular velocity profile and
consistent PTT(0.1, 0.01) stress at the inlet (option BC2). In Figure 4, axial profiles of tzz stress
are presented for the tube tooling geometry with BC2-type stress boundary conditions for
0.15We515, along sample lines at two radial locations, R4 and R5 (taken with respect to the
exit of the tube tooling geometry, as indicated in Figure 4(a)). Although there is a difference
between values at different radial locations, common to all plots, the stress field is fully
developed within the inlet section of the tube tooling geometry, as expected. There is a stress
build-up at the converging section, the growth rate being larger for WeB1, a result in
agreement with the findings of Gunter et al. [16]. Figure 4 reveals that tzz stress is larger nearer
the inner die wall (R5 over R4), and that there is some stress relaxation at the land region exit
section (CD). Note also, that oscillations are particularly prominent for We51 at the entry,
C, and exit, D, of the land region. Such sharp oscillations necessitate mesh refinement to reflect

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 697–712 (1998)
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Figure 3. Combined tube tooling–draw-down flow: (a) computational geometry and (b) finite element grid.
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smooth transition and are captured more accurately through adaptive remeshing, results for
which are presented elsewhere (Mutlu et al. [24]).

The flow in the tooling is initially shear dominated, though both shear and extension interact
through the converging section and the land region. Shear stress at the die outlet (CD) is
depicted in Figure 5 for 0.15We515 at four radial locations as above, maxima occurring at
the inner die wall (R5). Stress build-up in this zone is critical to the process design. It is noted
that the normal stress level is as much as five times larger than the shear stress level. Figure
5 reveals an increase in trz, immediately after the melt enters the land section, at C, with
subsequent stress relaxation. The trz values for We]5 essentially merge, and are almost
constant along the radial and axial directions.

Figure 4. Tube tooling flow: axial profiles of tzz stress along two sample lines; (a) R4 and (b) R5; BC2 option.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 697–712 (1998)
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Figure 5. Tube tooling flow: axial profiles of trz stress along four sample lines; (a) R1, (b) R3, (c) R4 and (d) R5; BC2 option.
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With the present grids the range of convergence in We parameter space for the isolated
draw-down and tube tooling flows is found to be significantly different. Experience has shown
that solutions are attainable for the isolated draw-down flow up to We=28, with some careful
treatment (see Gunter et al. [16]). For the tube tooling flow, convergence is limited to We=15.
This points to the fact that once the predominantly extension-dominated draw-down flow has
been resolved numerically, the greater complexity to the overall problem lies in solving the
tube tooling part of the flow due to its inherent nature.

3.2. Draw-down flow

Commencing from an annular velocity profile at the inlet, DI, a plug-like flow is rapidly
attained within 3% of the inlet tube length DE. An increase in velocity is observed in the
draw-down cone (05z51), and the flow in contact with the moving wire (15z51.5) is fully
developed. This velocity field is common to all We number tests for draw-down flow.

The variation in tzz stress for 0.15We528 is shown in Figure 6 with BC1-type, Figure 7
with BC4-type, and Figure 8 with BC3-type boundary conditions. To facilitate direct compari-
son, the results reported in Gunter et al. [16] for option BC4 with relaxed inlet stress are
reproduced in Figure 7. There is stress growth in the draw-down cone and relaxation within
the flow on the cable. An increasing value of We retards stress growth. The observed stress
growth in Figure 7, is almost entirely absent in Figure 6, except at We=5. For option BC1
of Figure 6, the inconsistent inlet stress rearranges itself immediately, with longer readjustment
lengths corresponding to lower We numbers. Within the extension region, the rise in tzz

generates peak values prior to the impact region with the wire (z=1). This differs from the
instance in Figure 7, where a maximum is reached at the attachment point. For any given We
value, stress maxima are larger for the instance with inlet PTT(0, 0.01) stress imposed than
with PTT(0.1, 0.01) stress. Negative, unphysical tzz values are observed in Figure 6 for We=1
and 5 with BC1 type boundary condition.

The assumption of a uniaxial extensional flow at a constant extension rate, consistent with
the imposed plug-type velocity profile at the inlet of the draw-down flow (option BC3), is made
to avoid these unphysical solutions. Predictions with these boundary conditions are depicted in
Figure 8, displaying a tzz stress build-up in the draw-down cone, with maxima reached at the

Figure 6. Draw-down flow: axial profiles of tzz stress; BC1 option.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 697–712 (1998)
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Figure 7. Draw-down flow: axial profiles of tzz stress; BC4 option.

same location as for relaxed inlet stress, and relaxation experienced in the flow on the cable.
The trends in Figure 8 at any axial location reveal that tzz first increases in value as We
increases from 0.1 to 5, reaches a maximum at We=5, and then decreases as We is increased
from 5 to 28. In contrast, with relaxed inlet stresses of Figure 7, the value of tzz decreases as
We increases. The solutions of Figure 8 can be explained through the behaviour of the
elongational viscosity as a function of l1o; ; first increasing with l1o; (extension thickening),

Figure 8. Draw-down flow: axial profiles of tzz stress; BC3 option.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 697–712 (1998)
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reaching a maximum, and then decreasing (extension thinning). The assumption of a con-
stant extension rate, o; , implies that the extensional viscosity and, thus tzz, will first increase
and then decrease as l1 (i.e. We) is increased. Although the velocity boundary condition at
the entrance varies for the plots in Figures 6–8, the velocity field internal to the flow is
virtually identical for the three cases. Hence, the difference in stress solution is attributable
to the variation in inlet stress profile. The maximum values of tzz for We=0.1 are almost
identical, indicating that for low We, the resultant stress on the cable does not vary with
the choice of boundary condition. This, however, is not the case for larger We values
beyond unity. Resultant tzz stress on the cable is larger for option BC3 than BC4. Hence at
higher We values, a stressed fluid state at the inlet, will result in larger stress on the cable
than those for a relaxed inflow.

With options BC3 and BC4 for We\1, there is no significant difference between tzz at
various radial locations; for We50.1 and at the end of the domain, values are larger on
the cable than internally. In contrast, for the case with an annular velocity profile and
PTT(0, 0.01) inlet stress (option BC1), tzz varies radially in addition to the reported axial
variation.

3.3. Combined geometry flow

For the combined flow problem, axial profiles of tzz stress along sample lines at four
radial locations are shown in Figure 9 for 0.15We515 and option BC2. R5 is the
position of the sample line on the cable. With this single-mode analysis, no marked stress
build-up is detected within the coating. At a detailed view, the general pattern is one of
fully developed tzz stress at the inlet section of the tube tooling die, increase along its
converging section, decrease at the end of the die tube (z=0) and start of the draw-down
section, growth along the draw-down cone (see insets in Figure 9), and finally decay within
the coating flow (15z51.5). Relaxation at the die exit and start of the draw-down
sections is most pronounced at We=0.1. This is in agreement with the fact that for a
purely viscous material (We=0), the stress vanishes immediately after the strain is re-
moved. Stress growth rate in the draw-down section is much reduced over that in the tube
tooling die section.

Figure 10 presents a comparison of tzz results along a sample line of R5 for the isolated
draw-down flow and combined geometry flow, with various inlet boundary conditions at
We=0.1 and 10. It is apparent that, for the isolated draw-down flow, different boundary
conditions do not influence the resultant residual stress in the coating for We50.1. When
We is increased, however, the use of uniaxial-extension PTT(0.1, 0.01) stress, as a boundary
condition to the isolated draw-down flow (option BC3), slightly overpredicts the tzz stress
in the flow on the cable. Nevertheless, option BC3 provides the closest match to the
combined flow results. At the inlet of the isolated draw-down flow, the stress values result-
ing from BC1 type boundary condition are larger than those corresponding to the com-
bined geometry flow with BC2 type inlet boundary conditions. It takes a considerable axial
distance for these large draw-down inlet stresses to relax, before the start of the stress
build-up in the draw-down cone. At We=0.1, this distance is shorter for the combined
geometry flow. The rate of decay of the draw-down inlet stress depends on initial values,
with the rate being larger for lower inlet stress values. For trz with consistent or inconsis-
tent inlet stresses, an insignificant difference is observed in the coating flow for either the
combined flow or the draw-down flow. An observation is that the level of the shear stress,
built-up in the tube tooling die section, can be as large as one-third of the tensile stress.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 697–712 (1998)
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Figure 10. Combined tube tooling–draw-down and isolated draw-down flows: axial profiles of tzz stress; (a) We=0.1
and (b) We=10.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 697–712 (1998)
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4. CONCLUSIONS

This paper has successfully demonstrated a viscoelastic analysis for tube tooling cable coating,
a processing problem of industrial relevance. Under a single-mode approximation, there is
barely any stress build-up detected within the coating. There is clearly a need to investigate this
issue within a multi-mode context, which is the subject of an extended study. The results
confirm that stresses are not fully relaxed at the die exit and entry to the draw-down section
within the combined geometry flow. The imposition of arbitrary inlet stresses, inconsistent with
the actual constitutive model employed at the interior of the domain, results in large stress
values at the inlet of the isolated tube tooling flow and draw-down flow problems.

For the isolated draw-down flow, the use of various boundary conditions at the inlet reflects
the sensitivity of the problem to boundary condition perturbation. These are not found to
significantly affect the resultant stress values in the coating on the cable at low Weissenberg
numbers. However, this is not the case as the level of Weissenberg number is increased. The
assumption of a consistent uniaxial extension inlet flow, together with the analytically
determined PTT stress, does have a considerable impact on these stress levels, yielding values
close to those pertaining to the full combined geometry flow with marginal overprediction. On
these grounds, the preferred choice of inlet boundary condition for isolated draw-down flow is
option BC3, being superior to options BC1 and BC4, and providing the best match to the
combined flow solution in the coating.

For the tube tooling flow, the use of inconsistent stresses at the inlet is not found to affect
the overall solution, as the inlet annular section is sufficiently long for the stress to adjust to
a fully developed state before reaching the converging section. This is also true for the
combined geometry flow, proving insensitive to the boundary condition options tested. Hence,
we have demonstrated that prehistory may be safely accommodated for this combined flow
problem, adopting the techniques advocated. Prehistory is clearly a less significant issue to
address for problems that commence from a shear-based flow, as opposed to those that
emanate from an extensional flow.
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